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Fig 3. Each network is symbolized by its two physiographic parameters,

drainage density (Ka) and drainage basin compacity tK¢).

coefficient is similar 1o that of terrestrial karst terrain drainage

basins. This suggests that martian valley networks are developed on
a substratum subject to structural constraints that determine the

effectiveness of groundwater flow [7] circulation. The physiographic

parameter is not representative of a wide runoff surface but more of

reduced-area systems such as sapping valleys, the morphology of
which is illustrated by the high frequencies of headwater localized

in confined units. Given that major concerns are the h islory of water

and the possibility of life, further investigations of ancient valley

networks as unequivocal evidence of circulation of subsurface water

will promise a significant advance in our knowledge of Mars.
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THE EVOLUTION OF TH'E EARLY MARTIAN CLIMATE

AND THE INITIAL EMPLACEMENT OF CRUSTAL HzO.

S. M. Clifford, Lunar and Planetary Institute, Houston TX 77058,

USA.

Introduction." Given the geomorphic evidence for the wide-

spread occurrence of water and ice in the early martian crust, and the

difficulty involved in accounting for this distribution given the

present climate, ithas been suggested that the planet's early climate

was originally more Earth-like. permitting the global emplacement

of crustal H_O by direct precipitation as snow or rain [1.2]-. The

resemblance of the martian valley networks to terrestrial runoff

channels and their almost exclusive occurrence in the planet's

ancient (-4-b.y.-old) heavily eratered terrain are often cited as

evidence of just such a period. An alternative school of thought

suggests that the early climate did not differ substantially from that

of today. Advocates of this view find no compelling reason to invoke

a warmer, wetter period to explain the origin of the valley networks.

Rather, they cite evidence that the primary mechanism of valley

formation was groundwater sapping, a process that does not require

that surface water exist in equ ilibrium with the atmosphere [3-5].

However, while sapping may successfully explain the origin of the

small valleys, it fails to address how the crust was initially charged

with ice as the climate evolved toward its present state. Therefore,

given the uncertainty regarding the environmental conditions that

prevailed on early Mars, the initial emplacement of ground ice is
considered here from two perspectives: (1) The early climate started

warm and wet, but gradually cooled with time, and (2) the early

climate never differed substantially from that of ttxtay.

Early Climate: Warm and Wet: The density and distribu-

tion of the valley networks throughout the heavily cratered terrain

suggests that, regardless of whether early Max's started warm or

cold, groundwater was abundant in the planet's early crust. How-

ever, given an initially warm start, an inevitable consequence of
both the decline in Mars' internal heat flow and the transition to

colder temperatures would h ave been the development of a freezing

front within the regolith that propagated downward with time,

creating a thernlodynan'dc sink for any H,,O within the crust.

Initially, water may have entered this developing region of frozen

ground from both the atmosphere and underlying groundwater.

However, as ice condensed within the near-surface pores, it effec-

tively sealed off the deeper regolith from any further atmospheric

supply. From that point on, the only source of water for the

thickening cryosphere would have been rite geothermally driven

flux of vapor arising from the presence of groundwater at depth.

Indeed, calculations by Clifford [6] indicate that a geothernlal

gadient as small as 15 K km -I could supply the equivalent of 1 km

of water from higher-temperature (higher vapor pressure) depths to

the colder (lower vapor pressure) base of the cryosphere every

10_-10 7 yr. Given the higher geothermal heat flow expected to have

characterized the planet 4 b.y. ago, this supply of vapor may have

been as much as 3-5 times greater in the past.

Pollack et al. [2] estimate that if the primary mechanism driving

climate change was the removal of a massive (l-5-bar) CO_ atmo-

sphere by carbonate fox'mation, then rite transition from a warm to

cold early climate must have taken between 1.5 x 10 v to 6 x 10 7

years. For transition times this slow, the downward propagation of

the freezing front at the base of the cryosphere is sufficiently small

(when compared with the geothermally induced vapor flux arising
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from the groundwater table) that the cryosphere should have re- cmstmayhave beengloballychargedwith waterandice withoutthe

mained saturated with ice throughout its development, need to invoke an early period of atmospheric precipitation.

From a mass balance perspective, the thermal evolution of the Tliis analysis suggests that, whether the early martian climate

earlycmsteffectivelydividedthesu[_s'ur_aar_inventoryofwaterinto started wam{01:c_ld, thernaal processes within the crust played a

twoevolvingreservoirs: (1) a slowly thickeningzone ofnear-_urface critical role in the initial emplacement of ground ice. An important

ground ice and (2) a deeper region of subpermafrost groundwater, consequence of this fact is that, below the depths of equatorial

One possible consequence of this evolution is that, if the planet's

initial inventory of outgassed water was small, the cryosphere may

have eventually grown to the point where all the available H,O was

taken up as ground ice [7]. Alternatively, if the inventory of H:O

exceeds the current pore volume of the cryosphere, then Mars has

always had extensive bodies of subpernaafrost groundwater. As

argued by Clifford [8], this latter possibility is strongly supported by

the apparent occurrence of outflow channels as recently as the Mid

to Late Amazonian [e.g., 9,10].

Early Climate: Like the Present: Of course, if early Mars

was cold from the start, the initial emplacement of ground ice would

have differed significantly from that described by the warm sce-

nario. This possibility was first considered by Soderblom and

Wermer [7], who suggest that the initial emplacement of crustal H20

was the result of the direct injection and migration of juvenile water

derived from the planet's interior. There are at least two ways in

which this emplacement may have occurred. First, by the process of

thel-mal vapor diffusion [6]. water exsolved from cooling magmas

will migrate from the warmer to colder regions of the crust. Upon

reaching the cryosphere, this H20 will then be distributed through-

out the frozen crust by a variety of thermal processes [11]. As a

result, any part of the cryosphere that overlies or surrounds an area

of magmatic activity will quickly become saturated with ice. The

introduction of any additional water will then result in its accumu-

lation as a liquid beneath the frozen crust, where, under the

influence of the growing local hydraulic head, it will spread laterally

in an effort to reach hydrostatic equilibrium. As this flow expands

beneath areas where the cryosphere is not yet fully charged with ice,

thermal vapor diffusion [6] and the other thermal processes dis-

cussed by Clifford [ 11] will redistribute H-,O into the frozen crust

until its pore volume is either saturated or the local source of

groundwater is finally depleted.

However, the fate of water released to the cold martian atmo-

sphere is significantly different. The direct injection of a large

quantity of vapor into the atmosphere (e.g., by volcanism) will lead

to its condensation as ice on, or within, the surrounding near-surface

regolith. As the available pore space in the upper few meters of the

regolith is saturated with ice, it will effectively seal off any deeper

region of the crust as an area of potential storage. From that point on,

any excess vapor that is introduced into the atmosphere will be
restricted to condensation and insolation-driven redistribution on

the surface until it is eventually cold-trapped at the poles. Should

such polar deposition continue, it will ultimately lead to basal

mehing [12], recycling water back into the crust beneath the caps.

As the meltwater accumulates beneath the polar cryosphere, it will

create a gradient in hydraulic head that will drive the flow of

groundwater away from the poles. As the flow expands radially

outward, it will pass beneath regions where, as a result of vapor

condensation from the atmosphere, only the top few meters of the

cryosphere have been saturated with ice. As before, the presence of

a geothermal gradient will then lead to the vertical redistribution of

H20 from the underlying groundwater until the pore volume of the

cryosphere is saturated throughout. In this way, the early martian

desiccation predicted by Clifford and Hillel [13] and Fanale et al.

[ 14]. the cryosphere h as probably been at or ne ar saturation th rough-

out its development, or at least until such time as the total pore

volume of the cryosphere grew to exceed the total volume of the

planet's outgassed inventory of water. The existence of outflow

channels with apparent ages of less than 1 b.y. [9.10] raises

considerable doubt as to whether this last stage in the evolution of

the martian cryosphere has yet been reached.
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THE HYDROLOGIC RE , E F MARS TO 'il-IE ON-
SET OF A COLDER CLIMATE AND TO THE THERMAL

EVOLUTION OF ITS EARLY CRUST. S.M. Clifford, Lunar

and Planetary Institute, Houston T'X 77058, USA.

_ Morphologic similarities between the martian valley networks

:and terrestrial runoff channels have been cited as evidence that the

iearly marlian climate was originally more Earth-like, with tempera-

_tures and pressures high enough to permit the precipitation of H20

=as snow or rain [1.2]. Although unambiguous evidence that Mars

once possessed a warmer, wetter climate is lacking, a study of the

2ransition from such conditions to the present climate can benefit our

=understanding of both the early development of the cryosphere and

the various ways in which the current subsurface hydrology of Mars

is likely to differ from that of the Earth. Viewed from this perspec-

tive, the early hydrologic evolution of Mars is essentially identical

to considering the hydrologic response of the Earth to the onset of

a global subfreezing climate. ; ; : i

If the valley networks did result from an early period of atmo-

spheric precipitation, then Mars must have once possessed near-

surface groundwater flow systems similar to those currently found

on Earth, where, as a consequence of atmospheric recharge, the

water table conformed to the shape of the local terrain. However,
with both the transition to a colder climate and the decline in Mars'

internal heat flow, a freezing front eventually developed in the

regolith that propagated downward with time, creating a thermody-

namic sink for any H20 within the crust. Initially, water may have

entered this developing region of frozen ground from both the

atmosphere and underlying groundwater. However as ice con-

densed within the near-surface pores, the deeper regolith was

ultimately sealed off from any further atmospheric supply. From th at

point on, the only source of water for the thickening cryosphere must


